使えるんです塩素系溶剤 Ver. 15-1 一適正管理・適正使用一

塩素系溶剤(ジクロロメタン(塩化メチレン)、トリクロロエチレン、テトラクロロエチレン)は、不燃性で、優れた溶解性などの特長を有することから、様々な産業分野・用途で広く用いられています。

一方、近年塩素系溶剤の法律を無視した不適切な取り扱いによる、慢性中毒事故が起こった事から、溶剤の有害性だけに注目され、「不適切な取り扱い」についての議論が殆どなされない中で、 化学品全体のリスク管理の在り方まで見直しが検討されるようになりました。

塩素系溶剤を取り扱う場合、様々な法律で順守すべき事項が定められていますが、これらは私たち人間や動植物の生命、環境を維持し、安全で健康な生活をする為に守らなければならない、非常に重要なルールになります。

これは、塩素系溶剤だけでなく、全ての化学物質も同様に物質の特性、危険・有害性を考慮し更にはこれまでに起きた事故を繰り返さないために、法律で定めてあります。

残念な事に、近年、化学品における事故や環境汚染により、様々な分野の法律が見直し改正されてきました。

このような社会環境の中で、「環境マネジメントシステム ISO 14001 の認証取得をすると塩素系溶剤が使えなくなる」或は、「塩素系溶剤が使用禁止になる」との誤解や、根拠のない風評が聞かれる事もあります。

産業洗浄分野では、自社で独自に制定した「グリーン調達基準」により、部品メーカーに対し塩素系溶剤の使用を禁止する大手企業の動きも一部見られますが、塩素系溶剤が残留したまま納品されるようなことは考えにくく、コスト、環境影響、品質等のトータルパフォーマンスを十分検討した上での方針なのだろうか、疑問に思われるケースもあります。

化学物質管理においては、単に有害性のみで評価(ハザード管理)するのではなく、ばく露量と合わせて評価するリスクベースの管理を行うことが、現在の世界の考え方になっており、化学品の特性に沿った適切な取り扱いをする事で、ベネフィットの享受と共に安心して使用する事が可能になっています。

この冊子は、塩素系溶剤の法規制動向や特性、健康及び環境への影響、排出量削減対策等に関する正しい理解の下で、今後も継続的にご使用いただくことを目的として纏めた「使えるんです塩素系溶剤ー適正管理・適正使用ー Ver.14」を最新の情報に基づき Ver.15 として改訂したものです。

$\left(1\right)$

塩素系溶剤は使用禁止ではありません

塩素系溶剤の製造、使用、廃棄等に関しては種々の法規制がありますが、使用禁止物質ではありません。又、今後も禁止されることは予定されていません。

一方 EU の REACH 規制では、高懸念物質(SVHC)と呼ばれる、発がん性や生殖毒性などが疑われる物質として特定された場合は、当該化学品のEU域内への輸入や域内での製造の制限をされています。

現在、当協会に関わる塩素系溶剤では、トリクロロエチレンが SVHC に特定されていますが、あくまでも REACH 規制は、EU 域内に輸出する製品(部品など)中に含まれる化学物質に関する情報提供を行う事で危害を未然に防止することを目的としており、EU 域外の製造過程(例えば日本での加工工程)で使用すること(最終製品に含有しないケース)を、制限するものではありません。

1.1 国内法規制の概要

「労働安全衛生法の大きな改正について(化学物質規制体系の見直し)」

令和 4 年、厚生労働省は令和元年から実施してきた、「職場における化学物質等の管理のあり方に関する検討会」並びに令和 2 年、3 年と開催したワーキンググループ(検討事項のうち技術的事項の検討)による結果の取り纏め報告を行いました。

その結果、安衛法の大きな転換となる法規制体系の見直しが示されました。

■ 職場における化学物質管理を巡る現状認識

(1)労働災害の発生状況

- ・化学物質による休業 4 日以上の労働災害(年間約 450 件)のうち、有機則や特化則等の規制対象外の物質による労働災害が約 8 割を占める。
- ・特化則等に追加されると、その物質の使用を止め、危険性・有害性を十分に確認、評価 せずに規制対象外物質に変更し、その結果、十分な対策が取られずに労働災害が発生。

(2)有害作業に係る化学物質の管理状況

- ・有機則、特化則等に基づく作業環境測定結果が、直ちに改善を必要とする第三管理区分と評価された事業場の割合が増加傾向。
- ・リスクアセスメントの実施率は 50%強。 実施しない理由は、「人材がいない」、「方法が分からない」などが多い。

(3)中小企業における状況

・企業規模が小さいほど、法令順守が不十分な傾向にあり、労働者の有害作業やラベル、 SDS に対する理解が低い。

(4)諸外国における化学物質管理

- ・欧州及び米国は、GHS 分類で危険有害性のある全ての物質がラベル表示、SDS 交付の 義務対象。
- ・欧州は、個別規制はしていないが、リスクアセスメントが義務、また細かい流通規制がある。 米国は、インダストリアル・ハイジニストの判断を重視。

以上の検討確認結果、化学物質管理体系の見直しとして、特定の化学物質に対する個別具体的な規制から、自律的な管理を基軸とする規制への移行をする事が決定されました。

<u>危険性・有害性が確認された全ての物質に対して、国が定める管理基準の達成を求め、</u> 達成のための手段は限定しない方式に大きく転換

<新たな仕組み(自律的な管理)のポイント>

- 国による GHS 分類で危険性・有害性が確認された全ての物質に、以下の事項を義務づけ(現在約 700 物質であるが、国による GHS 分類により、約 2,900 物質に増やす)
 - 危険性・有害性の情報の伝達(譲渡・提供時のラベル表示・SDS 交付)
 - リスクアセスメントの実施(製造・使用時)
 - ・ 労働者が**吸入する濃度**を国が定める管理基準以下に管理
 - * 発散抑制装置による濃度低減のほか、呼吸用保護具の使用などもばく露防止対策として容認
 - * 管理基準が設定されていない物質は、なるべくばく露濃度を低くする義務
 - 薬傷や皮膚吸収による健康影響を防ぐための保護メガネ、保護手袋等の使用
- 労働災害が多発し、自律的な管理が困難な物質や特定の作業の禁止・許可制を導入
- 特化則、有機則で規制されている物質(123 物質)の管理は、5 年後を目途に自律的な 管理に移行できる環境を整えた上で、個別具体的な規制(特化則、有機則等)は廃止す ることを想定
- ⇒ 国による GHS 分類結果、危険性・有害性が確認された全ての物質を安衛法規制対象に追加(約 1,800 物質)し、自律的な管理を義務化 (令和 3 年~5 年) 令和 3 年度以降新たに分類する物質(毎年 50~100 物質程度)の義務化(令和 6 年度以降)
- ⇒ <u>一方、「事業場内の化学物質管理の体制の確立」に向けて、安衛法のリスクアセスメント</u> 対象物質を取扱う場合、(約 2, 900 物質(施行令別表 9 及び 3)、新たに
 - ① 化学物質管理者の選任(全ての業種・規模)
 - ② 保護具着用管理責任者の選任(ばく露防止のために保護具を使用する場合) が義務化 (令和6年4月1日施行)
- 特化則等に基づく措置の柔軟化と措置の強化
 - ・有機溶剤、特定化学物質(特別管理物質を除く)、鉛、四アルキル鉛に関する特殊健康 診断の実施頻度について、一定の要件を満たした場合は、1 年以内に1回に緩和できる こととする。
 - ・作業環境測定結果が第3管理区分である事業場に対する措置の強化 事業者が改善措置を講じても第3管理区分となった場合に、ばく露防止のための措置を 新たに義務付け。

労働安全衛生法は、今後数年かけて国による GHS 分類で危険性・有害性が確認された全ての物質に対して、SDS、表示ラベルによる情報伝達、リスクアセスメントの実施、ばく露濃度を国が定める管理基準以下(新たに濃度基準値として設定)に管理するなど、労働災害を防ぐた

めの自律的な管理体制へ大きな転換をする事になります。

前述の労働災害の発生状況に記載の通り、法規制対象物質から危険有害性情報が良く分からない法規制対象外物質へのシフトが、いかにリスクを抱える事になるのか、当協会は 10 年以上も前から労働災害防止の観点で問題提起をして参りましたが、この度の法改正はこの点を大きく改善するものとして期待されます。

今回、記載した内容は改正概要の一部を引用抜粋したもので、詳細は下記厚労省のサイトにて、ご確認願います。

引用: 令和3年7月19日 化学物質規制の見直しについて(厚生労働省化学物質対策課) 令和4年5月31日 化学物質による労働災害防止のための新たな規制について 厚労省 URL https://www.mhlw.go.jp/stf/newpage 25984.html

令和5年2月10日「令和4年度化学物質管理に係る専門家検討会」報告書が公表されました。 厚労省 URL https://www.mhlw.go.jp/stf/newpage 30995.html

「令和4年度化学物質管理に係る専門家検討会」の報告書を公表します (mhlw.go.jp) 以降、毎年専門家検討会が開催され、多くの化学物質に新たに濃度基準値が設定追加されています。

● 塩素系溶剤については特化則に指定されており、これまで通りの管理運用が求められます。

従って、新たな濃度基準値は設定されませんが、前述の通り作業環境測定結果が第3 管理区分で改善が見られない場合は、労働者に有効な呼吸用保護具を使用させる事や、 保護具着用管理責任者の選任による作業者への指導、更には所轄労働基準監督署への 届け出等、ばく露対策の強化がされる事になります。(令和6年4月1日施行)

塩素系溶剤に関する主要な法律で近年改訂されたもの、或いは今後改訂予定のものは、 次の通りです。

① 労働安全衛生法:

前述の通り、安衛法は今後数年かけて大きな転換を向かえますが、塩素系溶剤においては特に大きな変更はありません。全ての事業者はリスクアセスメントを確実に行い、実際の作業においてどのような危険が潜んでいるのか、十分に検討、作業者への安全対策周知を行う事がこれまで以上に求められます。

第28条の2(事業者の行うべき調査等)

施行: 平成 28 年 6 月 1 日 同法に基づき、安全データシート(SDS)の交付義務対象の化 学品を製造又は、取り扱う全ての事業者が対象になります。(当初 640 物質でしたが、今後 数年かけて、約 2,900 物質に増える事になります)

事業者は、業務に起因する危険性又は有害性等(第五十七条第一項の政令で定める物及び第五十七条の二第一項に規定する通知対象物による危険性又は有害性等を除く。)を調査し、その結果に基づいて、この法律又はこれに基づく命令の規定による措置を講ずるほか、労働者の危険又は健康障害を防止するため、必要な措置を講ずるように努めなければならない事が法で定められています。

この調査の事を、「化学物質のリスクアセスメント」と呼んでいます。

塩素系溶剤は、従来より SDS 交付対象化学品ですが、事業者は改めて

- 1) 職場内で取り扱う全ての化学品を洗い出し(SDS による有害性確認)
- 2) 危険有害要因の洗い出し(労働災害に至るプロセスを具体的な状況で捉える)
- 3) 危険有害要因ごとのリスクの見積もり(リスク=危険有害性×ばく露量)
- 4) リスクの評価(許容可能かどうかの判断)
- 5) リスク軽減対策の検討・実施 どこまでリスク軽減をするかについては、安全衛生の確保、技術的可能性、コスト負担等 から総合的に事業者が検討判断する事になります。
- 6) リスクアセスメント結果の労働者への周知

くリスクの見積もりに関する具体的な手法>

厚生労働省は、様々な業種作業についてリスクアセスメントが出来る支援ツールを web 上に公開しています。

塩素系溶剤の取扱いについては、マトリクス手法、CREATE-SIMPLE、コントロールバンディング(化学物質リスク簡易評価法)、検知管を用いた化学物質のリスクアセスメント等が使われていますが、作業内容に応じて他のツールもあるので、ぜひ参考にして下さい。

マトリクス手法

http://anzeninfo.mhlw.go.jp/risk/risk_index.html

<厚生労働省:化学物質のリスクアセスメント実施支援>

- CREATE-SIMPLE(クリエイト・シンプル)
 https://anzeninfo.mhlw.go.jp/user/anzen/kag/ankgc07 3.htm
- ・ コントロールバンディング

https://anzeninfo.mhlw.go.jp/user/anzen/kag/ankgc07 1.htm

検知管を用いた化学物質のリスクアセスメント

https://anzeninfo.mhlw.go.jp/user/anzen/kag/ankgc07 4.htm

(詳細は、厚生労働省の"職場のあんぜんサイト"、化学物質のリスクアセスメント実施 支援をご参照下さい。)

https://anzeninfo.mhlw.go.jp/user/anzen/kag/ankgc07.htm#h2 2

これらのツールは、実際の作業内容から事故発生の可能性と重篤度を相対的に尺度 化し分類するマトリクス手法、化学物質の危険有害性のみで評価するコントロールバンディング、そして検知管を用いて実際に作業環境を測定して行う手法など、ここに掲載以外の手法もありますが、それぞれツールとしての特徴があります。

CREATE-SIMPLE は、コントロールバンディングでは考慮していない作業条件(換気や作業時間、作業頻度など)の効果も反映する点や、労働者のばく露濃度等を測定しなくとも使用出来る事から、コントロール・バンディングよりも詳細な見積もりが可能なツールとなっています。

これらのツールは、パソコン画面上で簡単にリスクアセスメントが出来ますが、事業者においては、多くの支援ツールを試しながら、自社の作業リスク見積もりが具体的に示されるツール選定をされるのが良いのではないか、と考えます。

•特定化学物質障害予防規則(以下特化則と称す):

塩素系溶剤は、有機溶剤中毒予防規則(以下有機則と称す)から改正移行、特定化学物質 第2類物質 特別有機溶剤等(特別管理物質)に分類。

(施行:平成 26 年 11 月 1 日)

この枠組みは、有機則で定められた職場の安全衛生管理体制・作業環境管理・健康管理等を準用しながら、発がん性の疑いを踏まえた措置として、作業記録の作成、特殊健康診断記録、作業環境測定及び評価の記録などの保存期間が 30 年間になるなど、より厳しい管理が求められるようになりました。

尚、特化則へ移行したものの、有機則準用規程などにより、トリクロロエチレンは、第 1 種 有機溶剤等へ、テトラクロロエチレンとジクロロメタンは第 2 種有機溶剤等に指定され、従来 通りの区分表示が義務付けられています。

(詳細は、厚生労働省の特化則改正パンフレット及び当協会 H.P. http://www.jahcs.org/でもご案内しています)

② 化学物質の審査及び製造等の規制に関する法律(化審法):

トリクロロエチレンとテトラクロロエチレンは第2種特定化学物質に指定され、特に環境への放出を抑制すべき化学物質として、製造輸入量等が管理されています。ジクロロメタンは優先評価化学物質の指定が取り消され(平成29年3月30日公示)、一般化学物質に移りました。

これは、近年、環境への放出量が減少しており、環境影響が少ないとの当局の判断を頂いたものですが、放出量が増加すると再度指定の可能性があるため、ジクロロメタンの適正使用にご協力をお願いいたします。

③ 化学物質排出把握管理促進法(化管法/PRTR 法):

塩素系溶剤は、第一種指定化学物質に該当し、特定の化学物質の環境への排出量等の 把握に関する措置(PRTR 制度)並びに特定の化学物質の性状及び取扱いに関する情報の 提供に関する措置(SDS 制度)により、事業者による化学物質の自主的な管理の改善を促進 し、環境の保全上の支障を未然に防止することを目的として制定(1999 年)されました。

近年 PRTR 法が大きく見直しされ、第一種、第二種共に対象化学物質が大幅に増える事になりました。(公布:令和3年10月20日、施行:令和5年4月1日)

トリクロロエチレンは、枠組みが変更され特定第一種指定化学物質に移行しました。

特定第一種に移行することにより、21人以上の事業所において、年間取扱量が1トン以上 だった申告対象事業者は、0.5トン以上の年間取扱量で申告対象事業者になりました。

詳細は、経産省 H.P.をご参照下さい。

https://www.meti.go.jp/policy/chemical management/law/prtr/8 4.html

(クロロカーボン衛生協会 H.P.の Q&A にトリクロロエチレンの数量把握の時期など分かりやすく掲載しています)

④ 大気汚染防止法:

塩素系溶剤は、約 200 種類の揮発性有機化合物(VOC)の一部として、排出抑制の為の 排出基準が定められています。(2006 年 4 月 1 日改正施行)

トリクロロエチレンは 21 年ぶりに大気環境基準が見直し改正され、従来の一年平均値 0.2mg/m3 以下から、同 0.13mg/m3 以下となりました。 (2018 年 11 月 19 日公布)

これまで国による常時監視における環境測定において、改定した基準値を超える場所は確認されておらず、環境基準は達成されています。

環境基準が今後とも達成されるよう、引き続き大気中への排出抑制対策を講じる事が求められます。

また、環境省はトリクロロエチレンを取り扱う施設が集積している地域において、地方公共 団体が実施している排出抑制手法の検討の支援を行っています。

その他、VOC 全般として 2013 年 3 月より VOC の濃度測定回数が、従来の年 2 回以上から年 1 回以上に改正されました。(VOC 排出量が目標を大幅に上回る削減をした事、事業者の負担軽減他)

⑤ 水質汚濁防止法:

塩素系溶剤の公共水域への排出基準、地下浸透水の地下への浸透禁止、地下水の水質 浄化措置命令等が定められています。

2012 年 6 月、水質汚濁防止法が改正施行され、塩素系溶剤を使用する特定施設等の構造基準が設定され、その遵守と定期点検、記録(補修記録も含む)が義務付けられました。

新たに塩素系溶剤を使用する洗浄設備、貯蔵施設を設置する場合や、設備の変更、使用 廃止など都道府県知事への届出が必要です。

事前に市区町村の環境課等にご相談下さい。

⑥ 土壤汚染対策法:

塩素系溶剤は特定有害物質に指定され、土壌の汚染に係る環境基準等が定められています。

<塩素系溶剤に適用される主な法規制>

大気汚染

労働安全衛生

排出抑制基準(排出口) (大気汚染防止法)

大気の汚染に係る環境基準 (環境基本法) 安全衛生管理体制・教育健康管理(特殊健康診断)作業環境管理(管理濃度)リスクアセスメント実施義務その他

(労働安全衛生法)

有機溶剤の区分・表示 取扱い上の注意、有害性の 掲示 換気装置等の設置・管理

(特定化学物質障害予防規則)

廃棄物

その他

特別管理産業廃棄物 (廃棄物の処理及び清掃に関する法律)

特別管理産業廃棄物処理業者

洗浄機:特定施設(水濁法)

地下水汚染

地下浸透禁止 排水基準(許容限度) 地下水の水質の浄化に係る 措置命令 構造基準(装置、タンク等) 定期点検及び記録 装置、タンク等設置許認可 及び廃止届 (水質汚濁防止法)

水質の汚濁に係る環境基準 (環境基本法)

土壤汚染

土壌の汚染の除去措置命令 (土壌汚染対策法)

土壌の汚染に係る環境基準 (環境基本法)

(法規制の詳細は、当協会 H.P. http://www.jahcs.org/law/cclaw.htm をご確認下さい)

1.2 海外での規制

米国や EU 諸国も、日本と同様に塩素系溶剤に対して規制が見直され、一般消費者がばく露する作業用途や、EU の REACH 規制で高懸念物質(SVHC)に特定されたトリクロロエチレンなど製造や使用制限を受けています。

EU: <ジクロロメタン>

ジクロロメタンを 0.1wt%以上含む塗料剥離剤(特定の用途制限)の上市・使用制限。

<トリクロロエチレン>

REACH 規制の高懸念物質(SVHC)として特定された事で、EU 域内でトリクロロエチレンの製造禁止へ、一部の特定用途、事業者を除き使用禁止になりました。

フランス: <パークロロエチレン>

ドライクリーニング用途(第三者の住居や建物に隣接する作業所の場合)としての、 パークロロエチレン使用制限 (用途限定)

- 2014年~ 製造後15年を経た装置でのパークロロエチレン使用禁止
- ・ 2022 年~ パークロロエチレンの使用禁止

米国 : <ジクロロメタン>

2019 年、一般消費者向けの塗料やコーティングの除去が禁止されていましたが、このたび特定用途を除き、殆どの産業および商業用途の使用を禁止する事が決定しました。

但し、厳格な労働者保護を採用できる高度に工業化された環境下で使用される条件下、 以下の特定用途について、継続使用が認められます。

米国で主要用途である、医薬品用途や、リチウムイオン電池用セパレーターの生産、

- ・クローズドシステムの加工助剤、反応原料、実験用化学物質、
- ・ポリカーボネート製造を含むプラスチック及びゴム製造での使用や接着用途、
- ・米国航空宇宙局、国防総省及び連邦航空局が要求する特定用途
- ・その他

これらの特定用途以外の用途は、2年以内に完全に廃止されます。

(環境保護庁(EPA): 2024 年 4 月 30 日)

<トリクロロエチレン>

環境保護庁は、これまで検討してきた規制の最終規則を発表。

トリクロロエチレン製造と、ほとんどの商用製品とすべての消費者製品の処理用途が禁止となります。(1年以内に禁止)

但し、厳格な労働者保護を採用できる高度に工業化された環境下で使用される条件下、航空機や医療機器に使用される部品の洗浄、バッテリーセパレーターの製造、超党派の米国イノベーション製造法に基づく気候に有害なハイドロフルオロカーボンの段階的削減の取り組みと一致して、冷媒を製造するなどの用途、セキュリティ、防衛システムで使用される金属部品の洗浄等、継続使用が認められます。

(環境保護庁(EPA): 2024 年 12 月 9 日)

<パークロロエチレン>

ドライクリーニングでのパークロロエチレンの使用について 10 年間の段階的廃止を最終決定しています。新たに導入したドライクリーニング機での使用は、6 か月後に禁止されます。

但し、トリクロロエチレンと同様に下記の用途においては、継続使用が認められます。

- ・超党派の米国イノベーション製造法に基づく気候に有害なハイドロフルオロカーボンを 段階的に削減する取り組みを補完する可能性のある、冷媒化学物質を含む、他の化 学物質の製造用途
- ・石油化学製造での用途、・農薬製造での使用(当初は禁止提案)、
- ·蒸気脱脂洗浄用途(金属洗浄等)
- ・接着剤やシーラント用途
- •その他

(環境保護庁(EPA): 2024年12月9日)

1.3 環境マネジメントシステム

環境マネジメントシステム ISO 14001 は、環境負荷の低減等の目標を設定し、継続的に改善を図るシステムです。塩素系溶剤の使用を禁止する或いは制限する等の要求事項は含まれていません。 従って、ISO 14001 の認証取得のために、塩素系溶剤の使用を中止する必要はありません。

有害性に関する未知の部分は少なく、リスク管理が容易

塩素系溶剤は、我が国では50年以上の使用実績があり、この間に有害性に関する種々の研究が 行われ、未知の部分がほとんどない、といっても過言ではありません。

従って、塩素系溶剤は、リスク調査が進んでいない物質よりもリスク管理が容易と言えます。

また、後述のように大気中寿命は短く、オゾン生成能及び地球温暖化係数が小さいこと等から地球環境への影響が少ない溶剤、と言うことができます。

一方、近年取り沙汰されている塩素系溶剤による土壌・地下水汚染は、過去の不適切な取扱いがその原因です。環境(地下)への排出による汚染の除去は、多額の費用がかかるだけでなく、地下水を利用されている方への補償など、課題を抱える事になります。

洗浄剤の選定に当たっては、洗浄剤のリスク評価と対策にかかるコスト評価の両面から、何が最適であるかを考え、適切な対応をすることが大切です。

2.1 未知の部分が少なく、適正使用がポイント

化学物質のリスクの原因となる有害性の評価項目には

- ①人の健康影響:急性毒性、慢性毒性、生殖毒性、発がん性等
- ②環境生態影響:生分解性、濃縮性、魚毒性等
- ③化学物質物性的影響:可燃性、自己反応性、腐食性等
- ④地球環境影響:オゾン層破壊、地球温暖化、光化学スモッグ、土壌汚染等があります。

塩素系溶剤については、これらのほとんどの項目についてデータが明らかになっています。

一般的に化学物質は、有用性と共に危険・有害性を併せ持っており、塩素系溶剤も例外ではありません。

化学物質が人の健康や、生態系に悪い影響を及ぼす恐れのある可能性(リスク)は、化学物質の 危険有害性(ハザード)の程度と、どれだけ化学物質にばく露したか(ばく露量)で決まります。

化学物質のリスク = 有害性 × ばく露量

つまり、有害性の高い物質であってもごく微量のばく露であれば、影響を受ける可能性は低くなります。

すなわち、塩素系溶剤の使用にあたっては、ばく露低減対策を行うことが重要になります。

一方、作業現場での管理濃度の遵守が労働安全衛生法で定められており、この濃度以下に管理 することで作業者への健康影響を抑えることができます。

次に塩素系溶剤と共に、代替洗浄剤の候補としてあがる 1-ブロモプロパン(臭素系溶剤)について、検証してみたいと思います。

1-ブロモプロパンは、塩素系溶剤と同じハロゲン系で、塩素系溶剤と似た性質もあり、溶解力が強い事、安衛法等に非該当といった事から塩素系溶剤代替として、使用されるようになりました。

しかしながら、2013 年 7 月 31 日、米国連邦労働安全衛生庁(U.S. OSHA)から、健康障害を防止するための緊急警告を発出した事を受け、厚労省は、同年 9 月 19 日付けで「1-ブロモプロパンによる労働災害防止について(要請)」を出しました。(基安化発 0919 第 2 号)

また、許容濃度は、2011 年に ACGIH(米国産業衛生専門家会議)が 10ppm から 0.1ppm への変更予告の後 2013 年に 0.1ppm が勧告され、日本においては、2012 年に日本産業衛生学会が 0.5ppm という厳しい数値を勧告しました。(生殖毒性、神経系)

このように、医学関係者からのばく露によるリスク警鐘がなされているものの、管理濃度が未設定である事は、日本の法規制がどうであれ事業者においては、作業環境の実態把握と環境改善が必要です。

安衛法施行令改正(2017 年 3 月 1 日施行)により、通知(SDS)及び表示(ラベル)対象物質に指定、またリスクアセスメント対象として義務化されるなど安衛法に動きがあり、その後、厚労省から公表された「令和 4 年度化学物質管理に係る専門家検討会」報告書(令和 5 年 2 月 10 日公表)で、1-ブロモプロパンの濃度基準値を 0.1ppm という極めて厳しい数値が提案されました。(令和 6 年 4 月 1 日施行)

また、「化学物質の審査及び製造等の規制に関する法律」いわゆる'化審法'で優先評価化学物質に指定されています。(2018年4月2日付け告示)

他、化学物質排出把握管理促進法(PRTR)、大気汚染防止法(VOC)以外、作業者の安全を守る重要な法律である、'有機溶剤中毒予防規則等'の規制対象物質となっていませんが、今回の安衛法の大きな改正により、労働者のばく露対策に重点を置いた化学物質管理のあり方検討会で、見直しされた事になります。

濃度基準値の 0.1ppm は、化学原料等の密閉プロセスでない「金属洗浄用途」については遵守するのが極めて難しいため、今後の動向については代替も含めて注視したいと考えます。

一部の事業者から、有機則や特化則に非該当 ⇒「安全な物質」と誤った解釈をされる事をお聞きする事がありますが、これは単に近年製造された歴史の浅い物質であったり、疫学データが少ない事や、事故事例が少ないだけに過ぎない点を知る事が重要です。

発がん性分類は、日本産業衛生学会で 2B(2018)、そして国際がん研究機関(IARC)も 2B(2018) に設定しました。(評価基準は次頁を参照下さい)

その他、EUでは可燃物等の警告ラベルの表示を義務付けられています。

<管理濃度と許容濃度>

物質名	厚生労働省 管理濃度	日本産業 許容濃度	
	(ppm)	ppm	mg/m^3
ジクロロメタン(塩化メチレン)	50	50	170
トリクロロエチレン	10	25	135
テトラクロロエチレン	25 *1	検言	中
1-ブロモプロパン	_	0.5 * 2	_

- *1 2016年10月1日(適用開始)
- *2 2012 年勧告

2.2 発がん性リスクについて

塩素系溶剤のヒトに対する発がん性は、現在確定していないものの、労働者が長時間ばく露した場合、がん等の健康障害を生ずる可能性が否定できない事から、労働安全衛生法第28条第3項の規定に基づき、「化学物質による健康障害防止指針(がん原生指針)」が公表され、労働者の健康障害を未然に防止するための適正管理・適正使用が求められています。

(平成 26 年 10 月 31 日指針改正公示 第 25 号)

また、前述の通り平成 26 年 11 月 1 日施行で有機則から発がん性の疑いのある物質として、より厳しい管理体制が求められる特化則へ移行した事も認識し、ばく露等の可能性のある有機溶剤業務については、適切な管理の元で使用する事が特に重要です。

塩素系溶剤は、誕生してからの歴史が長く特性を生かした様々な分野で使用されており、安全性に関する研究が最も進んだ溶剤の一つでもあり、これまでにジクロロメタンについては以下の研究報告がされています。

- ① ゼネカ中央毒物研究所(1995年) ばく露濃度 100~4,000ppm 動物(マウス、ラット、ハムスター、ヒト)について、検討した。
- ② 日本バイオアッセイ研究センター (厚生労働省委託研究:2002年) 動物実験により、2年間に渡る高濃度(1,000~4,000ppm)長期吸入ばく露試験を実施 したもの。
- ③ (独)産業技術総合研究所 化学物質リスク管理研究センター(2004年) 塩化メチレン詳細リスク評価書

これらの研究報告は、ジクロロメタンのばく露濃度として、管理濃度(50ppm)の数倍から数十倍の高濃度で、尚且つ長期間与えるという、通常の作業環境では考えられない高濃度領域で発がんのリスクが増加するとした結果です。取扱いにおいては各種法規制を順守し、ばく露防止に努める事が重要です。

<塩素系溶剤のヒトに対する発がん性リスク評価結果 (2025年9月現在)>

物質名	日本産業衛生学会	国際がん研究機関 (IARC)
ジクロロメタン	第 2 群 A	グループ 2A
トリクロロエチレン	第1群	グループ 1
テトラクロロエチレン	第 2 群 B	グループ 2A

<発がん性評価の基準>

● 日本産業衛生学会

第1群 :ヒトに対して発がん性があると判断できる

第2群A :ヒトに対しておそらく発がん性があると判断できる(証拠が比較的十分)

第2群B :ヒトに対しておそらく発がん性があると判断できる(証拠が比較的十分でない)

● 国際がん研究機関 (IARC)

グループ 1 : ヒトに対して発がん性がある

グループ 2A:ヒトに対しておそらく発がん性がある グループ 2B:ヒトに対する発がん性が疑われる

グループ 3、4 : 略

地球環境影響について

塩素系溶剤は揮発しやすい液体で、大気中に放出された場合、その寿命は比較的短く1週間から 5ヶ月と推定されています。

このために、大気中に蓄積される可能性が少なく、成層圏オゾン層に到達する前にほとんどが分解してしまい、オゾン層破壊の恐れはありません。

また、温室効果についても地球温暖化係数は炭酸ガスの 5~10 倍程度ですが、大気中の存在量を考慮すれば、地球温暖化の原因物質としては無視できるレベルであると言えます。

さらに、塩素系溶剤が酸性雨の原因になる割合はごくわずかです。

物質名	寿命(年)	オゾン破壊係数	地球温暖化係数 *2
ジクロロメタン	0.41	non zero *1	9
トリクロロエチレン	0.018	0.0005 - 0.0007 *1	<9
テトラクロロエチレン	0.36	0.006 - 0.007 *1	~ 9
1-ブロモプロパン	1	0.0033 - 0.111 *1	0.31
HCFC-225(cb)	5.8	0.03	525 *3
HFC-365mfc	8.6	_	804 *3
HFC-43-10mee	15.9	_	1,650 *3
HFE-449sl(HFE-7100)	3.8	_	421 *4

- *1 CFC-11を1とした場合の相対値(引用: UNEP2012年5月改定値)
- *2 炭酸ガスを1とした場合の相対値(100年積分値)
- *3 日本フルオロカーボン協会より AR5 100 年積分値
- *4 Measuring Emissions Guidance DetailedGuide 2023 ME1764(ニュージーランド 環境省編) AR5 100 年積分値

塩素系溶剤の大気中濃度は、国が定める有害大気汚染物質として全国各地域で継続的に測定し、情報公開しています。

調査結果は次頁の通り、環境基本法で定められている環境基準値と比較して、遥かに低いレベルにあり、しかも各方面の努力と協力により、そのレベルが年々減少していることが大気環境モニタリング調査(環境省)において確認されています。

この継続測定地点モニタリングは、継続局と呼ばれ毎年見直され、継続局の変更や地点数の増減があり、過年度データが都度修正計算されるので、あくまでもトレンドとして捉える事になります。 (過年度データ及び本年発表の修正データは、環境基準から見ればごく僅かな変動幅です)

> <地方公共団体等における継続測定地点モニタリング調査結果(年平均値)> (過去 10 年間継続して各月測定した地点)

【大気中濃度】 単位: µg/m³

27 1710 1 1110122											1-8
	環境					年	度				
物質名	基準 (µg/m3 以下)	Н26	H27	H28	H29	H30	R1 (H31)	R 2	R 3	R 4	R5
ジクロロメタン	150	1.5	1.6	1.3	1.4	1.5	1.4	1.2	1.5	1.4	1.4
トリクロロエチレン	130	0.52	0.46	0.49	0.43	0.44	0.48	0.38	0.33	0.35	0.37
テトラクロロエチレン	200	0.14	0.14	0.12	0.11	0.10	0.10	0.09	0.095	0.096	0.093

出典:環境省「令和5年度 大気汚染状況について 令和7年5月」

3.1 揮発性有機化合物(VOC)排出抑制について

光化学オキシダントや浮遊粒子状物質(SPM)による汚染を抑制する目的で、大気汚染防止法が改正され、原因物質とされる VOC の排出が規制されています。

VOC とは、「大気中に排出され、又は飛散したときに気体である有機化合物」と定義されています。 即ち、排出されたときの状態が気体であれば全てが VOC であることになります。

平成 18 年度に VOC 排出量の削減目標(平成 23 年度の排出量を平成 12 年度比 30%削減)が 設定され、平成 22 年度の VOC 排出量は、目標を上回る 40%を超える削減を達成。

しかし、光化学オキシダント注意報の発令レベルは、当初見込んだほど減少しませんでした。

その為、平成 23 年度以降は新たな削減目標は設定せず、現行の法規制と自主的取組を組み合わせた(ベストミックス) VOC 排出抑制制度を継続することになりました。

その結果、全国における VOC 排出量は、平成 22 年度以降も削減傾向が継続しています。

また、VOC 削減目標を大幅に超える削減が達成された事から、事業者の負担軽減策として、VOC の測定頻度を従来の年 2 回以上から年 1 回以上に、大気汚染防止法施行規則が改正されました。 (平成 25 年 3 月 6 日公布・施行)

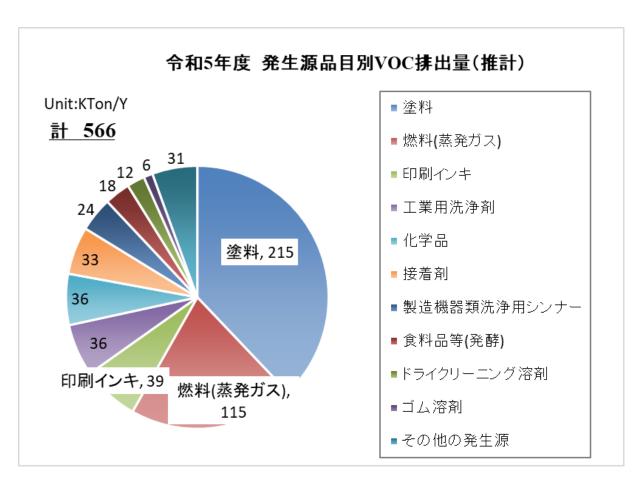
我が国の VOC 排出量は、令和 5 年度推計値で年間 56 万 6 千 Ton/年であり、平成 12 年度からの削減率は 60%に達しています。(後述のグラフ参照)

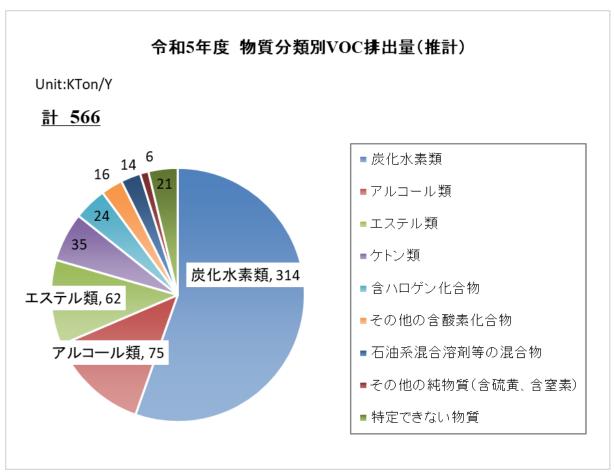
塗料や燃料(蒸発ガス)、印刷インキ等、炭化水素類が多く排出されている事が分かります。

光化学オキシダントに係る大気汚染状況は、これまでに様々な取組の推進によって、光化学オキシダントの原因物質である窒素酸化物(NOx)や揮発有機化合物(VOC)等の大気環境中の濃度は低減してきましたが、環境基準を設定以来達成率がほぼゼロという状況にあります。

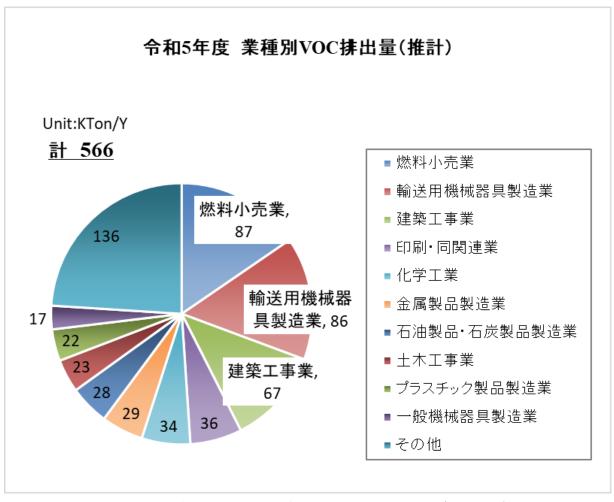
これまで発生を抑制するためには、VOC と NOx の排出量比を十分に考慮し両者を削減する必要性の示唆や、国内対策と越境汚染対策(東アジア各国)の両面を考慮すべきとした、報告書を公開しています。

光化学オキシダントは、前駆物質となる NOx や VOC が大気中で光化学反応を起こすことにより生成すると考えられています。これまでに、前駆物質の大気中濃度による反応性や、物質ごとのオゾン生成能など、生成機構に関する研究は実施されていますが、その複雑さ故に、未だに解明には至っていません。


光化学オキシダントの排出抑制策の具体化にあたっては、削減対象とする物質の特定、生成機構の更なる解明などが必要とされています。


我が国における、VOC 排出量全体に占める塩素系溶剤(ハロゲン化合物計)は僅か 4.2 %程度ですが、排出事業者においては環境への排出を出来るだけ抑える事が求められています。

(環境省「令和 5 年度 大気汚染物質(有害大気汚染物質等を除く)に係る常時監視測定結果」 令和 7 年 5 月、「気候変動対策・大気環境改善のための光化学オキシダント総合対策について」令 和 4 年 1 月より引用)


* VOC 排出抑制対策の進捗状況は、環境省が発生源や化学物質別、業種別、都道府県別のデータを収集、推計しており毎年データを公開しています。(VOC 排出インベントリ)

次のグラフは、今年公開された最新の VOC 排出インベントリ(令和 5 年度推計値)から、VOC 排出の全体像など主要データを抜粋、グラフ化しました。

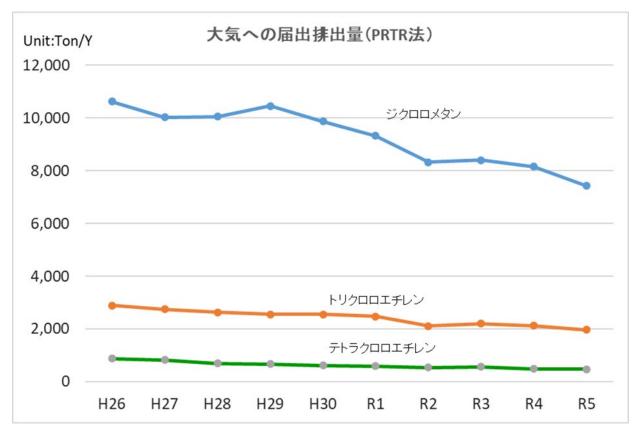
塩素系溶剤は、含ハロゲン化合物に該当し、ジクロロメタン、トリクロロエチレン、 テトラクロロエチレン他(フッ素系、臭素系を含む)がここに推計されています。

日本の VOC 排出量は毎年減少傾向であるが、令和 2 年度以降ほぼ変わらず、平成 12 年度対比で 60%(削減率)と、半減以下のレベルに達しています。(平成 12 年度:140 万 5 千 Ton)

出典:「揮発性有機化合物(VOC)排出インベントリについて 令和7年7月」 (揮発性有機化合物(VOC)排出インベントリ検討会)を元に作成

詳細は、環境省の VOC 排出インベントリをご確認下さい。

https://www.env.go.jp/air/osen/voc/inventory.html


なお、塩素系溶剤の大気環境中への排出量は、PRTR 法(特定化学物質の、環境への排出量把握等及び管理の改善の促進に関する法律)に基づく届け出排出量の推移から概算として確認出来ます。

塩素系溶剤においては、有害大気汚染物質の自主管理の推進による環境負荷低減対策など、各方面の努力と協力により年々減少しており、令和 5 年度は令和 4 年度より減少傾向となりました。

<塩素系溶剤の大気への届出排出量推移(PRTR法)>

(単位:Ton/年)

対象物質					年	度					
N 条 初 頁 (PRTR No.)	H26	H27	Н28	Н29	Н30	R 1 (H31)	R 2	R 3	R 4	R5	
ジクロロメタン	10,628	10,024	10,061	10,454	9,878	9,325	8,322	8,402	8,155	7.425	
(186)	10,028	10,024	10,001	10,434	9,070	9,323	8,322	0,402	6,133	7,425	
トリクロロエチレン	2,893	2,893 2	2.745	2 622	2.552	2.552	2.475	2 112	2 100	2 120	1 072
(281)			2,893 2,74	2,745	2,745 2,632	2,553	2,552	2,475	2,112	2,199	2,129
テトラクロロエチレン	878	823	604	675	623	597	538	561	101	472	
(262)	8/8	823	694	0/3	023	397	338	564	484	4/2	

注) 令和 4 年以前のデータは、公開後に変更された届け出内容を反映集計

4

塩素系溶剤の特長

塩素系溶剤は、物質の持つ特徴を利用し、様々な産業分野で使用されています。

- ここでは、産業洗浄分野での洗浄剤としての特長を纏めます。
 - ①優れた洗浄力(脱脂能力が強い) 洗浄力の指標とされるカウリブタノール(KB)値が高く、洗浄力に優れています。
 - ②不燃性

引火点がなく、通常の使用条件下では不燃性であるため、設備費が安価です。

- ③比熱、蒸発潜熱が小さい。 比熱、蒸発潜熱が小さいため、洗浄・回収エネルギーが少なくて済みます。
- 4)廃液の回収(再生)が容易である。

防爆など特別な装置を必要とせず、容易に蒸留・分離回収(再生)が可能であり、容易に洗浄液の蒸留・分離が出来る事(再生)は、不燃性で沸点の低い溶剤ならではの、大きな特長です。 特に高い清浄度を求められる蒸気洗浄を、シンプルな洗浄プロセスで可能にしています。

半世紀以上に渡り、不燃性の有機溶剤が使用され続ける理由が、ここにあると考えています。

- ⑤洗浄機の大きさが、水系洗浄剤や炭化水素系洗浄剤などと比較してコンパクト 水系洗浄剤の多槽リンス工程や、炭化水素系洗浄剤の防爆構造が不要なため、洗浄機をコ ンパクトに設置する事が可能です。
- ⑥洗浄システムのエネルギーコストが低く、また、地球温暖化の影響が小さい。 被洗浄物の種類や洗浄条件等による違いはあるものの、塩素系溶剤による洗浄は、水系や 準水系での洗浄と比較して、バッチ式精密金属洗浄におけるエネルギー使用量と温暖化影 響度の値が半分程度なので、環境負荷が低く、環境に優しい洗浄剤と言えます。

<各種洗浄剤の特性値比較>

物質名	KB 値	引火点 (タグ密 閉式)	沸点 ℃	比熱 J/kg•K	蒸発潜熱 kJ/kg	蒸 発 熱 量*1 kJ/kg	洗 浄 エネ ルギー*2 MJ	温暖化影響 *3 kg-CO ₂ /t- Metal
ジクロロメタン	136	なし	40	1,172	329	352	36.4	76.3
トリクロロエチレン	130	なし	87	921	239	301	28.1	58.9
テトラクロロエチレン	90	なし	121	879	209	297	30.2	64.1
1-ブロモプロパン	125	なし	71	1,130	246	306	_	_
HCFC-225	31	なし	54	1,005	145	180	_	182.1
HFC-365mfc	13	_	40	1,465	180	_	_	_
水系	_	_	100	4,186	2,256	2,591	62.6	115.5
IPA	_	12	82	2,553	690	850	_	110.6

- *1 1kg の洗浄剤を液温 20℃から蒸発させるに必要な熱量
- *2 洗浄時の電気エネルギー使用量
- *3 全洗浄プロセスに於ける温暖化影響を炭酸ガス発生量で評価(Arthur D Little, Inc, Update on Comparison of Global Varrning Implications of Cleaning Technologies Using a Systems Approach, October 25,1994 等より引用)

塩素系溶剤は長年にわたって使用されている経済的で、不燃性の、リサイクル性にすぐれる溶剤です。塩素系溶剤による洗浄の代替として多くの溶剤、混合組成物及びシステムが提案されていますが、それらには①エネルギー消費量が多い、②処理しなければならない大量の汚染水が発生する、③可燃性であるため防爆設備等の消防法に則した対応が必要、或いは④環境及び健康影響が未だ充分に評価されていないため、将来的に新たなリスクが発生する可能性がある、等の問題があります。

ともすれば、有害性(ハザード)のみが議論されていますが、適正に使用することで環境及び健康への影響を抑制する事が可能であり、設備投資及びランニングコスト等を考慮すれば塩素系溶剤はバランスのとれた、優れた溶剤であることがお解り頂けると思います。

クロロカーボン衛生協会は、他の溶剤には代え難い特徴を有する塩素系溶剤を適切に、末永くご 使用いただくため、各種法規制に則った適正な使用方法の啓蒙・普及、ひいては環境汚染の防止を 積極的に推進して参ります。

クロロカーボン衛生協会会員名簿 (五十音順)

会員種別	会社・団体名
	AGC 株式会社
正会員	関東電化工業株式会社
工公 員	信越化学工業株式会社
	株式会社トクヤマ
準会員	東亞合成株式会社
特別会員	日本特殊化学工業株式会社
	株式会社ガステック
賛助会員	光明理化学工業株式会社
貝叨云貝	一般社団法人クリーンライフ協会
	日本産業洗浄協議会
	有限会社本間産業

2025年11月11日現在

使えるんです塩素系溶剤 Ver. 15-1

—— 適正管理·適正使用 ───

2025年11月 改訂

発 行 クロロカーボン衛生協会

〒104-0033 東京都中央区新川 1-4-1 住友不動産六甲ビル 8 階

> 電話 (03) 3297-0321 FAX (03) 3297-0316 URL:http://www.jahcs.org